Time: 2 hours

Max score: 30

 (3×5)

Answer all questions.

(1) Prove or disprove.

(a) There exists an irreducible polynomial of degree 3 over \mathbb{R} .

(b) Let α denote the positive real fourth root of 2. Then there are two intermediate subfields of the extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} .

(c) Every finite extension is contained in a Galois extension.

(d) The polynomial $x^2 - t$ is irreducible and inseparable over $\mathbb{F}_2(t)$, the field of rational functions over \mathbb{F}_2 .

(e) If L/F and K/L are Galois extensions, then K/F is also a Galois extension.

(2) (a) Define a constructible real number.

(b) Prove that if a_1, \ldots, a_m are constructible real numbers, then there is a chain of subfields of \mathbb{R} :

$$\mathbb{Q} = F_0 \subset F_1 \subset \cdots \subset F_n = K \subset \mathbb{R}$$

such that

- (i) $a_i \in K$ for all $i = 1, \ldots, m$ and
- (ii) F_{i+1} is a quadratic extension of F_i , for each $i = 0, \ldots, n-1$.
- (c) Conversely, show that if L_i 's are fields such that
 - $\mathbb{Q} = L_0 \subset L_1 \subset \cdots \subset L_n = K \subset \mathbb{R},$

and L_{i+1} is a quadratic extension of L_i for each i = 0, ..., n-1, then every element of K is constructible. (1+3+1)

(3) (a) Let $\Phi_n(x)$ denote the *n*-th cyclotomic polynomial. Prove that for *n* odd, n > 1,

$$\Phi_{2n}(x) = \Phi_n(-x).$$

(b) Let F be a field of characteristic p. If K is a finite extension of F such that [K : F] is relatively prime to p, show that K is separable over F. (2+3)

- (4) (a) Find the splitting field K in \mathbb{C} of the polynomial $x^4 4x^2 1$ over \mathbb{Q} .
 - (b) Determine the Galois group of this splitting field over \mathbb{Q} .
 - (c) Describe the lattices of subfields and the subgroups of the Galois group. (1+2+2)

-End-